Advanced
Concepts in Energy Storage
Developments permit greater reliability and resource utilization.
Energy storage technologies represent one strategy that can help utilities provide the power quality and reliability required by increasingly sensitive equipment, increase the utilization of present capacity, and defer construction of new plants. The main advantages of energy storage are round-the-clock availability and reduced transmission line losses.
Energy storage devices improve system responsiveness, reliability, and flexibility, while reducing capital and operating costs for both suppliers and users. Suppliers can use energy storage for transmission line stabilization, spinning reserve, and voltage control, which means industrial users realize improved power quality and load-leveling. Society benefits by making better use of generation capacity and avoiding new construction.
Argonnes 25 years experience at the forefront of energy storage research provides wide-ranging expertise in batteries, high-power energy storage, flywheels, and superconductors. The Laboratorys research in these areas has always been conducted in close partnership with industry. For example, Argonne has worked with Commonwealth Research Corp. to develop an ultra-low-friction superconducting bearing for flywheel energy storage.
The bearing, which uses a permanent magnet suspended above superconductors,
has a friction coefficient 1,000 times better than that of the best commercial
mechanical bearings. Flywheels with such bearings could be used for diurnal
storage. Recent collaborative efforts have focused on scaling up the bearing
for practical flywheel energy storage at utility sites. Superconductive
Components, Inc. (Columbus, Ohio), has licensed two Argonne superconductor
materials tech-nologies to manufacture levitators, which it markets worldwide
for flywheel and other applications.
Secondary Battery Energy Storage
Contributed to every battery system that has been developed over the
past several decades, from very high peak power and specific energy lithium/disulfide
for stationary energy storage to nickel/metal hydride and lithium-ion for
consumer electronics:
Invented lithium/disulfide battery.
Improved power of sodium/nickel chloride battery.
Developed new electrode materials for lithium-polymer battery.
Increased performance of lithium-ion battery.
Ultracapacitors and High-Power Energy
Concentrate on higher-risk breakthrough capacitor concepts with the
expectation of improving their performance and safety by several orders
of magnitude:
Developed high energy-to-power galvanic stack.
Fabricated high dielectric constant (800) perovskite (PZT,
BST) thin films by metal organic chemical vapor deposition.
Studying solid/solution interfacial structure of ultracapacitor
materials with in situ synchrotron x-rays and transient electrochemical
techniques.
Flywheel Energy Storage
Design and develop high-efficiency flywheel energy-storage devices
for industrial sponsors; such systems can achieve 90% diurnal efficiency
with less than 2% per day idle losses. Test hardware components and complete
flywheel energy systems:
Designed composite rotor systems using E-glass/epoxy and carbon/epoxy
composites.
Developed superconducting bearings that set a world record
for lowest rotational losses.
Conduct research on active magnetic and mechanical bearings.
Developed motor/generators with 99% conversion efficiency and
0.1% per day idle losses.
Demonstrated power electronics for efficient motor input and
power extraction from flywheels.
Developed containment vessels capable of up to 20 kWh of energy
containment.
Superconducting Magnet Energy Storage
Develop and test components for superconducting magnetic energy storage
devices (both low- and high-critical-temperature devices):
Among world leaders in ongoing development of high-temperature
superconductors (HTS).
Developed some of the largest high-field superconducting magnets
in the world.
Demonstrated (first in the world) that use of HTS current leads
provides higher efficiency.
Designed magnetic cryostats with some of lowest losses in the
world.
Among world leaders in measurement and numerical analysis of
magnetic fields.
Collaborators with industry in the development of HTS composite
conductor for energy technology applications.
Contacts
For technical information, contact K. Michael Myles, Argonne National
Laboratory, Bldg. 205, 9700 South Cass Avenue, Argonne, Illinois 60439;
phone: 630/252-4329; fax: 630/252-5528; e-mail: myles@cmt.anl.gov.
For information on working with Argonne, contact Paul Eichamer, Industrial
Technology Development Center, Argonne National Laboratory, Bldg. 201,
9700 South Cass Avenue, Illinois 60439; phone: 800/627-2596; fax: 630/252-5230.
June 1998
Argonne National Laboratory is operated by The University of Chicago
for the U.S. Department of Energy under contract No. W-31-109-Eng-38.